
IJAICT Volume 6, Issue 10, October 2019
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2016.12.01 Published on 05 (10) 2019

Corresponding Author: Ms. O. Mrudula, College of Engineering (A), Andhra University, India. 1163

QUERY OPTIMIZATION USING INDEX JOINS FOR
PERFORMANCE GAIN IN HIVE

Ms. O. Mrudula
Research Scholar

Mr. Karteek KVLN Dr. A. Mary Sowjanya
Assistant Professor

Department of Computer Science & Systems Engineering,
College of Engineering (A),

Andhra University, Visakhapatnam, India

Abstract— The Index joins are crucial for efficiency and
scalability when processing the queries over big data. Hive being a
batch oriented big data management engine that is well suited for
data analysis application and for OLAP. For every “selective” query
whose output sizes are small fraction from the contributing data,
there the brute-force suffers from poor performance because of
redundant disk I/O operations or lead to initiations of extra map
operations. Here in this paper an attempt is made and propose index
join technique to speed up the query process and integrate it in Hive
by mapping our design to the conceptual optimization flow. To
evaluate the performance, we create and evaluate test queries on
datasets generated using TPC-H benchmark. The results indicate
significant performance gain over relatively large data sets and/or
high selective queries having a two-way join and a single join
condition.
Keywords — Indexing Techniques, Map and Reduce
functions, Join Operation, Hive, and Hadoop.

I. INTRODUCTION

The exponential growth of data being generated, manipulated,
analyzed, and archived now a day’s introduces new challenges
and opportunities for dealing with the so called big data.
Hive[1] is batch-oriented big data software, best suited for
OLAP workloads and well suited for query processing and data
analysis. Hive originally developed by Facebook in 2009 and
now under the Apache Software Foundation, Hive is gaining
popularity for its SQL like query language HiveQL and for
supporting majority of the SQL operations in relational
database management systems (RDBMS).

Being the expensive operation in RDBMS, join has been the
focus of many query optimization techniques to improve
performance of database systems. Investigating such techniques
for join operations in Hive an index-based join algorithm has
been developed for queries in HiveQL. When a query requires
only a small subset of data selected by a predicate in the
WHERE clause, the brute-force method which scans the entire
tables results in poor performance for redundant disk I/Os, and
irrelevant maps initiation in case the query is issued using the

mapreduce[2], which is built on top of Hadoop[3] enables it to
stream the data at a high bandwidth and perform massive
manipulation of data.

In this work, an index-based join technique has been proposed,
designed, implemented and integrated in Hive. The Hive
architecture details have been extended by reverse engineering
the code and mapping the design to the conceptual optimization
flow.

II. PROBLEM STATEMENT

With the advent of web 2.0, roles of the users and web
applications went through a revolution. With the advent of Web
2.0, roles of the users and web applications went through
revolution. The passive view-only users have become the
content creators. The chance to interact over the Internet
granted to users, dumped all the data from social media, blogs,
videos and other web.2.0 technologies to web sites has caused
increased loads to the already accumulated massive pile of data
on servers.

Fig 1 : Hive System Architecture [1].
This change demands innovative solutions to store this vast
amount of data and support efficient querying over it. The raw
data has to be queried to extract the worthwhile information
from it.

© 2019 IJAICT (www.ijaict.com)

Corresponding Author: Ms. O. Mrudula, College of Engineering (A), Andhra University, India. 1164

The main contribution of work is an extension of the query
processing in Hive query language for performing index-based
join operations, without user’s interference. The proposed
extension is incorporated in the Hive source code and checked
for correctness of the implementation and efficiency. The
results of the experiments show effectiveness of the proposed
index-based join technique.

III. HIVE ARCHITECTURE

Hive system architecture consists of several components and
their interactions, and the Hadoop Map-reduce framework. The
high level view of this data-warehouse architecture is depicted
in Figure 1 taken from[1]. At the bottom of Figure 1, we can
see the Hadoop system. At the top of Figure 1, the elevated part
of Hive is placed in consort with its fundamental elements. A
brief description of these elements and their roles are as
follows:

 Meta-store: Hive system catalog contains schemas,
tables, columns, and their types, tables’ locations,
statistics and other information essential for data
management. Since meta data should be available
fast, Hive uses a traditional RDBMS (e.g., Derby
SQL Server, MySQL Server, etc.) to manage meta
data rather than using the HDFS.

 Driver: The component that receives the query, after
it is received by the UI from the user, and manages
the lifespan of a query inside Hive. It also implements
the notion of session handles and retrieves the session
statistics.

 Hive Server: Hive server or Thrift Server allows
access to Hive with a single port, that is, it allows
programmatically access to Hive remotely. Therefore
it provides means to integrate Hive with other
applications.

 JDBC/ODBC: JDBC (Java Database Connection) and
ODBC (Open Database Connection) which are
implemented on top of Thrift sever are other access
points to Hive. This Application Programming
Interfaces (API) provides access to Hive from other
applications. JDBC is dedicated to provide access to
Java applications.

 Command Line Interface/Hive Web Interface:
Shortly CLI and HWI, are the points to issue a query
(usually by a human user) to Hive. CLI is the most
popular way to use Hive that can work both interactively

or with a batch of scripts. We have used CLI in our
experiments.

How the components of Hive architecture interact with each
other? A user submits the query via Hive CLI/Hive web
Interface, JDBC/ODBC, or Thrift interface. The Driver
receives the query and passes it to the compiler. Compiler does
the typical parsing, type checking, semantic analysis, and pings
the meta-store if needed. Finally it generates a logical query
plan that is sent to the optimizer. The optimized query plan is
converted to a DAG of mapreduce jobs. The executor executes
these jobs in the order of dependency on Hadoop.
4. Proposed Index Joins

The existing indexes in Hive are built only over single tables.
Please note that the existing index is different than “Join
index”, which would be an assembly of an index built over
more than one table that maintains pairs of identifiers of tuples
from two or more relations that match in case of a join [9][10].
This work speeds up a two-way join query expressed in
HiveQL as below:

 SELECT column_list
 FROM table1 JOIN table2
 ON (table1.col1 = table2.col1)
 WHERE ...]
 [GROUP BY];

in which WHERE and GROUP BY clauses are optional. All
changes are transparent to the user and the syntax of the query
remains intact. For the sake of illustration we considered only
two tables, but the implementation works effortlessly for
multiple tables as well.
 The scenario is, given two tables A and B with B having
been indexed and a query to join these two tables, perform the
join by scan then whole A and for each row in A probe the
index on B. This is obtainable by re-writing the above query
into:

 SELECT column_list
 FROM table1_index JOIN table2
 ON (table1.col1 = table2.col1)
 [WHERE ...]
 [GROUP BY ..];

Our implementation uses the ideas in HIVE-1694 and
manipulates the internal data structures in the query processor;
however, to adjust it to process joins we added the extension
presented in Fig. 3. As the first step shown in the figure, the
optimizer searches for a Join Operator. If this step is omitted,
the optimization is enabled for any query.

IJAICT Volume 6, Issue 10, October 2019

© 2019 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2016.12.01 Published on 05 (10) 2019

Corresponding Author: Ms. O. Mrudula, College of Engineering (A), Andhra University, India. 1165

The reason the Join Operator is fetched first is, depending on
the different operators, different design decisions have to be
made. A query containing a WHERE clause uses a
distinguishably different design to benefit from the index from
the one containing a GROUP BY does. Then, the optimizer
examines the query for a two-way join.

Our technique can be easily extended to support multiway
joins, by leaving this check out, but since we have limitations
over the SELECT column list we chose to represent our work
for a two-way join. In the next step we get the
TableScanOperator which points to the table it should
manipulate. We have to check that the table has an index and
the index is valid. An index is valid if (1) it is of type compact
(2) it covers all the partitions of the table. The index validity
check returns true if a table is not partitioned, or if it has
partitions and they are not mentioned in the WHERE clause. In
case it has partitions and they are mentioned in the WHERE
clause, it returns true if all the mentioned partitions are covered
by the index. After this step the optimizer attempts to re-write
the query. Final query looks like:

 SELECT column_list
 FROM index_table JOIN table2 ON

 (table1.col1 = table2.col1)
 [WHERE ..]
 [GROUP BY];

The first or the second table (whichever that has the index) is
replaced by its corresponding index table. This means that table
must be removed from every internal data structure in the DAG
of operators and the new table must be added. Other data
structures do not match with the new DAG of operators.
However since there is no dependency on them, this is not of an
issue when the query executes. Since the table is changed, the
schema is also changed. This requires adjusting the de-
serializes.

If any of the conditions is not met in the flow described in Fig.
3, the process ends in “Exit” which then implies that the
execution proceeds as usual without using the index. It is
important to mention that, since there is no longer any access to
the base table, there is no access to all of its columns either.
Instead, a subset of the attributes (the ones that are indexed) is
available after the re-write. This limits the queries that can be
handled to only queries referencing those specific columns. Our
experiments and results are described next.
 Merits:
1. Reduction in time complexity.
2. Load balancing
3. Indexes can be partioned depending on the size of the data.
4. Increase in speed of query lookup on certain columns of the
table.
5. Indexing can be done on partioned external tables.

Fig 2 : Optimization flow for index-based join

IV. EXPERIMENTS AND TEST ANALYSIS

4.1 Environment
The test environment includes a two-node Hadoop cluster, each
node having Intel Core i5-2400 3.10GHz 6MB Quad Core,
250GB SATA HDD and 8GB of RAM. Both machines were
running Ubuntu v10.04 as the OS.

4.2 Test data
We used the standard benchmark TPC-H version 2.14.4[8] to
generate data used in our experiments. We considered only the
lineitem and orders tables. We created database instances of
various sizes ranging from 1 GB to 20GB for Experiments 1,
and 1GB to 90GB for Experiments 2.

4.3 Test queries
We perform a two-way join with optional WHERE and
GROUP BY clauses. The reason for this choice is because such
clauses are the children of the TableScanOperator.

Since we manipulate the TableScanOperator in our proposed
solution, we have considered queries 2-4 to make sure that our
approach does not affect any of the potential dependents of
TableScanOperator. Here are the queries:

1. SELECT DISTINCT o.O_ORDERKEY,
o.O_TOTALPRICE, o.O_ORDERDATE
FROM orders o JOIN lineitem l
ON o.O_ORDERKEY =l.L_ORDERKEY;

2. SELECT DISTINCT o.O_ORDERKEY,
o.O_TOTALPRICE, o.O_ORDERDATE
FROM orders o JOIN lineitem l

IJAICT Volume 6, Issue 10, October 2019

© 2019 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2016.12.01 Published on 05 (10) 2019

Corresponding Author: Ms. O. Mrudula, College of Engineering (A), Andhra University, India. 1166

 ON o.O_ORDERKEY = l.L_ORDERKEY
 WHERE o.O_TOTALPRICE >15000;

3. SELECT o.O_ORDERKEY,
o.O_TOTALPRICE, o.O_ORDERDATE
FROM orders o JOIN lineitem l
ON o.O_ORDERKEY = l.L_ORDERKEY
GROUP BY o.O_ORDERKEY,
o.O_TOTALPRICE, o.O_ORDERDATE;

4. SELECT o.O_ORDERKEY,
o.O_TOTALPRICE, o.O_ORDERDATE
FROM orders o JOIN
lineitem l ON o.O_ORDERKEY =
l.L_ORDERKEY WHERE
o.O_TOTALPRICE > 15000 GROUP BY
o.O_ORDERKEY, o.O_TOTALPRICE,
o.O_ORDERDATE;

4.4 . Run-time parameters
The parameter mapred.map.tasks controls the number of map
tasks and mapred.reduce.tasks holds the number of reduce
tasks. In our experiments, these parameters were set to 20 and
4, respectively.

4.5. Evaluation metrics
In all of our experiments, we measure performance using the
query response time in seconds(s). In Experiments 2, we
measure performance by also considering query selectivity
since it becomes important in the presence of indexes.

4.6. Experiments 1
Experiments 1 includes execution of the 4 query types, each
one is executed 5 times, on a multi-node and a singlenode
Hadoop cluster using 5 different dataset sizes 1GB, 5GB,
10GB, 15GB, 20GB with lineitem holding almost 5/6 of the
total data and number of tuples ranging from about 7×106 to
150×106. Figures 3 to 6 depict the average response time for
each data size.

In the multi-node setup, moving from 1GB of data to 20GB, in
all steps our index-based approach outperforms the existing
one. The larger the data are, the bigger the gap between the
index-less and index-based approaches becomes. Our index
method is almost two times faster than the index-less approach
in all graphs.
In the single-node setup, we see the same behavior; for each
data size, our proposed method outperforms the normal one and
the larger the data are, the bigger the gap between the index-
less and index approaches becomes. The index method is
almost about two times faster than the index-less approach.

Comparing the results from both setups, we note that the
single-node setup works faster than the multi-node setup for the
data size 1GB in both approaches. For the data size of 5GB, the
multi-node setup is slightly faster than the single node case.
Afterwards, multi-node is almost two times faster than the
single-node. The performance difference between the two
setups indicates the networking overhead only pays off when
the data size is relatively big. In our experiments, the data size
over 5GB is suitable for the multi-node setup. We say
‘relatively’ because this measure depends on the hardware
configuration of the computers as well as the networking
equipment.

Experiments showed that repeating the same query over the
same dataset does not lead to significantly different response
times. The reason is, Hive does not cache the query plan and
starts from scratch for each query. This causes the first
response time not to be always the longest one. With the
growth of data size, the deviation from the average response
time in each step grows.

To better study the performance of our technique, in the rest of
Experiments 1, we conduct the same test with different queries,
which are extensions of query1.

Looking at Figures 3 to 6, the graphs show similar curves,
using which we concluded that the 4 types of queries have
almost the same behavior and they did not lead to significantly
different response times in neither approach.

The most expensive operator in all the queries is the JOIN.
Neither WHERE nor GROUP BY, which where extra clauses
added to queries 2-4, initiates a new mapreduce job. The
number of mapreduce jobs in all the queries is equal to 1. As a
result, in the rest of the experiments we only use Query 1.

 We also studied the cost of index creation in terms of time and
space to decide whether or not to use index. Figures 7 and 8
compare the size of the index with the size of the data and the
time taken for creating the index with the average time taken
for an index-less Query1 execution on multimode setup
respectively.

As shown in Fig. 7, the size of the index is less than 15% of the
input dataset size, which is relatively small. This is due to the
simple tiny structure of indexes in Hive which only stores pairs
of values and their relative locations from the beginning of the
index file.

IJAICT Volume 6, Issue 10, October 2019

© 2019 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2016.12.01 Published on 05 (10) 2019

Corresponding Author: Ms. O. Mrudula, College of Engineering (A), Andhra University, India. 1167

However, the index size can vary based upon the number of
columns on which the index is created. In all our tests, the
index had been built over the join attribute, L_ORDERKEY.

Depending on the dataset size, the index creation time increases
as the data size grows. As shown in Fig. 8, the time grows from
60% to 75% of the time taken for executing the query itself.
This is because processing the query and creating the index
scan the entire dataset for both which takes the major part of
the process. This scan operation is considerably reduced for the
queries when base table is replaced by the index table. Recall
that indexes are built only once, and its cost is amortized over
many executions of queries using the index.

Fig 3 : Query 1 response time with/out index on multi-node and single-node
setups

Fig 4 : Query 2 response time with/out index on multi-node and single-node
setup

Fig 5 : Query 3 response time with/out index on multi-node and single-
node setups

Fig 6 : Query 4 response time with/out index on multi-node and single-node
setups

Fig 7 : Index size vs. data size

Fig 8 : Index creation time vs. query response time

IJAICT Volume 6, Issue 10, October 2019

© 2019 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2016.12.01 Published on 05 (10) 2019

Corresponding Author: Ms. O. Mrudula, College of Engineering (A), Andhra University, India. 1168

4.7. Experiments 2
The second set of experiments we conducted for performance
measurement considered different value for the query
selectivity ratios. For this purpose, we used Query1 over the
tables orders having a fixed size of 164 MB with 15 ×105
tuples and also table lineitem of size ranging from 0.71 GB to
90.6 GB and with the number of tuples ranging from 6×106 to
7×108. In order to increase the selectivity, the lineitem distinct
join key or the output size of the query was kept at 1,500,000
while the data was doubled each time. In this experiment, we
were interested to find the point at which our index-based
approach works noticeably better than the index-less approach
on our current multi-node setup.

Fig. 9 shows the graphs for average response times measured.
As we move from case 1 to 8 in this figure, the index-less
approach grows non-linearly, while the indexbased approach
remains more or less constant at an average of about 87
seconds. In case 6, with 45GB of data and 0.3% as query
selectivity, the index-based approach is an order of magnitude
faster than the index-less approach. The next iteration, case 8,
with double query selectivity (0.1%) and double data size
(90GB), our approach is 20 times faster than the index-less
method. The exponential behavior of the index-less graph in
Fig. 9, started at iteration 6 with 0.7% as the query selectivity.
If the curve keeps the same trend, our index-based approach
can possibly be 2 orders of magnitude faster than the index-less
approach at 45TB of data with very selective (0.0007%)
queries.

As indicated in Fig. 9, the index size gradually drops from 18%
of the data size to 9% over the 8 iterations. The Hive index size
grows or shrinks proportional to the data size or distribution. In
Experiments 2, the index decreasing rate is due to the data
distribution, as at each iteration, the number of distinct values
of all attributes, was kept the same while the volume of data
was doubled.
 In regard to index construction time, in Fig. 9, we can see that,
up to iteration 5, index creation time is slightly less than the
execution of Query 1 without index, and exceeds the query run-
time afterwards.

Fig 9. Query 1 response time with/out index on multi-node and single-node
setup (Experiments 2).

V. CONCLUSION

Indexes have been around for long time and the benefit of using
them is well known. However, deciding when to use indexes in
a situation requires extensive evaluation and trade-off between
its cost and performance. In this research, we used the current
Hive indexing structure to speed up join queries. From
Experiments 1, we observed, in general, larger the data are,
larger the performance gain becomes. Our approach grew
linearly in all cases shown in Figures 3 to 6. In Experiments 2,
we increased the sizes of the datasets with growing selectivity
ratios. The results of these experiments indicated that our
approach is exponentially faster than the current Hive
approach.

We saw in Fig. 7, that the index size was almost fixed at only
15% of the data size in Experiments 1; and in Fig. 9, it took an
average of 12% of the data in Experiment 2.Though index size
depends on the data distribution and the number of attributes
for indexing, our experiments showed the Hive index space
utilization is reasonable. Index creation time graphs depicted in
Figures 7 and 9 showed the time required on building an index
depended on the data distribution, the more duplicated tuples
resulted in a slower index creation process became. In Fig. 9,
the worst case (iteration 8) index creation took almost twice the
query execution time.

Index construction comprises of reading the whole data, sorting
it, and eliminating the duplicates, which is a quite lengthy
process. Until the data in the base table is untouched, any types
of queries that have the privilege to utilize the index can use the
index, nevertheless the index creation cost is only incurred
once.

With respect to accessing the index, current Hive indexes do
not provide an instant access to values, which undoubtedly
comes with heavy space overhead. What they offer instead is,
scanning a huge amount of data is replaced with scanning a
drastically small set of it that holds the desired values. The cost
of finding a value in the current index Hive is O(n), where n is
the number of tuples. Assuming a Hive table of n tuples and its
index with mentries, accessing a specific value in the index is
reduced from O(n) to O(m) with m much smaller than n.

The indexing technique in Hive is rather new and the progress
has been limited to current index structure and also the query
life cycle. There are a number of optimization ideas to further
improve Hive index-based joins, including: designing a cost-
based optimizer, which can evaluate a query plan to help decide
to use indexes or not, probably by using column level statistics
and auto-indexing or the ability for the compiler

IJAICT Volume 6, Issue 10, October 2019

© 2019 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2016.12.01 Published on 05 (10) 2019

© 2019 IJAICT (www.ijaict.com)

Corresponding Author: Ms. O. Mrudula, College of Engineering (A), Andhra University, India. 1169

References

[1] Antony, S., Chakka, P., Jain, N., J., Liu, Murthy, R.Sarma, J. S.,
Thusoo, A., Zhang, N “Hive – A Petabyte Scale Data Warehouse
Using Hadoop,” IEEE 26th Intl.Conf. Data Engineering (ICDE), Long
Beach, CA, 2010, pp. 996 – 1005

[2] Dean, J., Ghemawat, S. “MapReduce: Simplified Data Processing on
Large Clusters,” Mag. Commun . ACM 50th anniversary, vol. 51, issue
1, 2008, pp.107-113

[3] ApacheHadoop[Online].Available: http://hadoop.apache.org/

[4] HIVE-1644[Online].Available: https://issues.apache.org/jira/browse
HIVE- 1644

[5] HIVE-1694[Online]. Available: https://issues.apache. org/jira/ browse /
HIVE- 1694

[6] Y. Jia and Z. Shao. A Benchmark for Hive, PIG and Hadoop, 2009.
https://issues.apache.org/jira/browse/HIVE-396

[7] The Apache Software Foundation. Hadoop MapReduce.
http://hadoop. apache. org/.

[8] The Apache Software Foundation Hive. http://hive. apache.org

[9] Hive Wikipedia. http://wiki.apache.org/hadoop/Hive/.

[10] An, M., Wang, W., Wang, Y., “Using Index in the MapReduce
Framework,”, 12th Intl. Asia Pacific Web Conf. (APWEB), Beijing,
China, 2010, pp. 52-58

[11] K. Mythili and H. Anandakumar, "Trust management approach for
secure and privacy data access in cloud computing," Green Computing,
Communication and Conservation of Energy (ICGCE), 2013
International Conference on, Chennai, 2013, pp. 923-927.doi:
10.1109/ICGCE.2013.6823567

[12] Chansler, R., Kuang, H., Radia, S., Shvachko, K.”The Hadoop
Distributed File System,” in Proc. IEEE Conf. Mass Storage Systems
and Technologies (MSST), Incline Village, NV,2010, pp. 1 – 10.

[13] TPC-H[Online]. http://www.tpc.org/tpch/

[14] Li, Z., Ross, K. A. “Fast joins using join indices,” in The International
Journal on Very Large Data Bases, vol. 8, issue 1, 1999, pp.24

[15] Gruenheid,A. Mark, L.Omnecinski,E.“Query Optimization using
column statistics in Hive,” in Proc.15th Symp. Intl. Database
Engineering & Applications (IDEAS), Lisbon, Portugal, 2011, pp. 97-
105, 2011

Authors

O.Mrudula has done her B.Tech
in Information Technology from
M.V.G.R College of Engineering
and M.Tech in Computer Science
from Andhra University.

Karteek KVLN has done his
B.Tech in Computer Science &
Engineering and M.Tech in
Computer Science from Andhra
University.

 Dr.A.M.Sowjanya has done her
B.Tech and M.Tech in Computer
Science. Her Ph.D is in
Incremental clustering. She is at
present working as an Assistant
Professor in College of
Engineering (A), Andhra
University. Her research
interests include Data mining
and Big Data.

IJAICT Volume 6, Issue 10, October 2019
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2016.12.01 Published on 05 (10) 2019

http://www.ijaict.com)
http://hadoop.apache.org/
https://issues.apache.org/jira/browse
https://issues.apache.
https://issues.apache.org/jira/browse/HIVE-396
http://hadoop.
http://hive.
http://wiki.apache.org/hadoop/Hive/.
http://www.tpc.org/tpch/

